
LanStore: a highly distributed reliable file storage
system

Vilmos Bilicki

University of Szeged
Department of Software Engineering

6720 Szeged, Hungary

bilickiv@inf.u-szeged.hu

ABSTRACT

We need clever solutions that manage distributed network systems. LanStore is a highly reliable, fully
decentralized storage system which can be constructed from already existing desktop machines. Our software
utilizes the otherwise wasted storage capacity of these machines. Reliability is achieved with the help of a
traditional erasure coding algorithm called the Reed-Solomon algorithm which generates n error correcting code
items for each m data item. The distributed behavior is controlled by a voting- based quorum algorithm. These
provide us with the capability of tolerating up to n simultaneously failing machines. As LanStore is intended to
be used in LAN environments, instead of employing an overlay multicast solution we used an IP level multicast
service. To use the bandwidth effectively, we designed a special UDP- based multicast flow control protocol. Our
solution supports both IPv4 and IPv6. For the implementation platform we chose the Windows family and the
.NET framework as they are the most popular platforms in offices and university departments. So far we have
implemented a prototype version of this solution. We measured its performance and the results indicate that this
solution can provide a throughput comparable to the currently used network file systems, its performance
depending on the selected error correcting capability, the number of failing machines and the performance of the
client machine. In special cases like video-on-demand with a high client number our solution can outperform the
traditional single server solutions.

Keywords
distributed system, distributed storage, erasure codes, multicast

1. INTRODUCTION
In today’s hectic world time is money and so is
information. This is especially true nowadays with
customer data from e-business and the huge amount
of logistic and scientific data which may be worth
their weight in gold. The amount of data is increasing
sharply. The average storage capacity you get for
your money is skyrocketing. Storage of several
hundred GBytes is achievable for everyone. One
might argue that today’s storage capacity is just
following the trends and there is enough cheap
storage to meet the increasing demand.

Permission to make digital or hard copies of all part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or fee.

.NET technologies ‘2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

 Unfortunately, the total cost of ownership is also
increasing sharply with the amount of the maintained
data. In a typical company there are several file
servers which provide the necessary storage capacity
and there are many tape libraries for archiving the
contents. If the storage need grows the company can
purchase a new hard disk or a new server. To have a
reliable system there is usually replication between
the dedicated servers. The disk drives are organized
in raid arrays, typically RAID 1+0 or RAID 5
[Che94]. This solution is not scalable enough for
today’s internet scale applications where there can be
huge fluctuations in demand. Failsafe behavior versus
effective storage capacity ratio is not optimal because
of mirroring. Management is the other weak point of
this system. That was why the Storage Area Network
was designed. In a typical SAN there are several
storage arrays that are connected via a dedicated
network. The storage arrays typically contain some
ten to sixty hard disks. To protect the data from hard
disk failure these disks are organized into RAID 0, 1,
5 arrays. Protection from more two or more hard disk

failures is very costly because of mirroring. In larger
systems it is vital to protect the data against storage
array failure; hence the storage arrays are duplicated
and connected by SAN switches. The servers are
connected to this network via their fiber channel
interfaces and provide a 2 GBit/s transfer capability.
The scaling of this system is achieved by adding new
hard disks to arrays, or moving the partition
boundaries. The price of SAN components is high
compared to typical network components and servers,
and the storage usage failure toleration ratio is not so
optimal.

We would like to present a much better and cheaper
solution to this problem. A typical PC now has huge
computing and storage capacity. It is not unusual to
find more than 100 GBytes of storage capacity, over
500 MBytes of RAM and two GHz or more CPU
clock frequency in a desktop PC. It seems that these
parameters are constantly increasing. A typical
installation of an operating system and the software
required does not consume more than ten to fifteen
GBytes. The rest of the storage space is unused. A
typical medium-sized company has more than 20
PCs. A university or research lab usually has more
than two hundred PCs. In this case the storage
capacity that is wasted may be several TBytes in size.
So it would great if we could utilize this untapped
storage capacity.

In order to solve the above-mentioned problem we
decided to design and implement LanStore with the
following design assumptions:

• It is highly distributed without central server
functionality.

• It has low server load. We would like to
utilize the storage capacity of desktop
machines; these machines are used when our
software runs in background.

• It is optimized for LAN. The use of
multicast and a special UDP based protocol
is acceptable.

• It has effective network usage. We designed
and implemented a simplified UDP-based
flow control protocol.

• It is self organizing and self tuning. We used
a multicast-based vote solution to implement
the so-called ‘Group Intelligence’.

• There is a highly changeable environment.
The desktop machines are restarted
frequently compared to dedicated servers.

• It is a file-based solution. For effective
caching we chose file-based storage instead
of a block-based one. [Kis92]

• It has campus, research laboratory-type file
system usage. Also, file write collisions are
rare. [Kis92]

• It has an optimal storage consumption
failure survival ratio. As a first approach we
selected Reed-Solomon encoding for data
redundancy.

2. OVERVIEW
In this article we would like to present our LAN-
based distributed storage solution, which can work
even when the node failure rate is high. In the next
part we list and compare several existing solutions for
distributed data storage approaches. In Section 4 we
describe the main building blocks of our application.
The dependence between these blocks and the design
assumptions are also included here. Then Section 4.1
describes the data loss problem and the currently
available solutions for it. We compare these solutions
with our solution. Section 4.2 describes the network
layer of our application and we show the features of
our new simple multicast flow control algorithm. In
Section 4.3 we present the core of our application,
namely that of group intelligence. We show the goal
of this layer and the solutions used. Next, Section 4.4
discusses our security layer with the features
provided. Section 4.5 describes our data persistence
layer. The design goals and the chosen solutions are
also stated here. The implementation details are then
described in Section 5. Finally, in Section 6, we
present our results.

3. RELATED WORK
Distributing the contents among storage blocks is by
no means a new idea. The oldest and the most
popular technique is the RAID (Redundant Array of
Independent Discs) technique [Che94]. It uses two
basic data distributing solutions called stripes and
mirroring. The first algorithm uses XOR parity data
slices for correcting only one error while the second
one can be used several times to achieve the
necessary error correcting level, but the storage
efficiency then sharply decreases. RAID is used
typically for computers with several hard disks inside.
The Zebra [Hart93] file system took the idea of
striping from RAID, but instead of distributing the
data among hard disks it distributes the data among
storage servers. To effectively use the network
bandwidth it uses per client striping instead of per file
striping. The weak point of this solution is its single
error correcting capability. Petal [Lee96] uses
striping without redundancy and mirroring as a type
of data distribution. One can define block level
virtual disks with the aid of a low level interface.
There are special server functions which translate the
addresses used on a virtual disk to a physical machine

and disk addresses. It uses a heartbeat backbone to
provide the so-called “liveness” property. A
distributed consensus is achieved by using Leslie
Lamport’s Paxos [Lam98] algorithm. The goal of the
Pasis [Wyl00] project was to create a solution for
building a survivable data storage that was as simple
as possible. Here is a thick client and thin servers.
The only functionality implemented in servers is the
data store which can be implemented as a simple file
share, except that all this functionality is implemented
on the client side. For the object name to physical
location mapping, a directory server is used. In a later
article [Wyl04] the authors of the Pasis framework
define a new approach for handling
Byzantine[Cas00]-type failures. In this solution the
correction of failed storage nodes is a client task;
there is no background process for consistency
maintenance. This solution does not utilize the
computing power of server nodes. Self*-store [Str00]
is based on Pasis, its goal being to create a safe
storage where, for a specified duration, there is no
chance of data erasure. If the logfiles were stored in
the Self*-store then the intruders would not be able to
erase their footprints. OceanStore [Rhe03] defines a
global scale storage system on a multicast overlay
network. They use Tapestry[Zha01] for object
naming and locating. To achieve data redundancy
they use both erasure codes and mirroring. There are
several defined classes of storage nodes with different
responsibilities. For example the inner ring members
have the task of data redundancy handling, but this
solution is unsuitable in a laboratory where the
storage nodes are desktop machines and they cannot
tolerate a heavy processor load from a background
process. FAB [Fro03] defines a storage system with a
block level interface. The clients use SCSI commands
for data manipulation whose implementation uses the
thin client and thick server paradigm. This solution is
unsuitable in an office or laboratory, however

4. ARCHITECTURE
Before going into detail let us see the high level
workings of LanStore. As we mentioned before the
main design goal was to gather the empty storage
capacity into a virtual storage unit. To utilize in an
equal way the storage capacity of the member nodes,
we divided the files into equal fragments. In this way
every storage node has the same number of stored
data fragments. We would like to collect the free
space from PC’s in computer laboratories,
classrooms, and so on.

�
�
�
�
�
�
�
�

�
�
�
�

	
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�

Figure 1

There is a high probability that one or more machines
will be rebooted or turned off. We need data
redundancy to correct the data which is stored on
these machines. We will use forward error correcting
codes (FEC) for error correcting. With the help of
these algorithms we create n data fragments for m
original data fragments. This means that we can
reconstruct n failing data fragments. This process is
shown in Figure 1. The consistency among modules
is provided by a voting algorithm. If there are a
critical number of working data nodes the remaining
nodes may be reconstructed. Our solution is
transaction based. At the end of a transaction a vote is
taken and any changes are written to a permanent
storage unit when the majority of nodes agree on the
next common state. If there is no majority acceptance
of the new state the transaction will roll back. After
the changes are written into a permanent storage, a
second vote is taken of the result. If there is a
successful majority vote the whole task will be
marked as fulfilled; if there is no successful majority
result the first and the second transactions will roll
back.

In our system the file is the basic data unit. We
designed the file store for campus and research
laboratory usage where file-based caching could be
much more effective than block-based caching
[Kis92]. The files are identified with the aid of the
hash of their contents. With this solution we never
store the same file twice. If someone tries to upload a
file that already exists in our storage system, it creates
a new link to the existing file. In the case of a
modification, the storage uses versioning to handle
the modifications. Our application is divided into
independent modules. This design pattern provides an
easy-to-maintain and robust code, where each module
can be replaceable by another one using interfaces.
The necessary functionality groups of our software
provide us with natural borders among modules.

Figure 2

The modules are the following:

• Data redundancy module
• Network module
• Data persistence module
• Security module
• Group intelligence module
• Application logic module
• GUI module

Figure 2 shows the communication path between the
modules. The control module is the core of our
application; it uses the services provided by other
modules. It is singleton, while every other module is
thread safe. We may find that there are the same
modules in the client and server sides, which
contradicts our goal of developing an application
with a fat client and thin server. During normal
functioning the server does not use its Data
Redundancy module. It only stores, sends the
necessary data fragments and maintains its state with
the help of the Group Intelligence module. We need
the Data Redundancy module only for heavy data
migration when every server helps a new or old
server in an inconsistent state to achieve the
consistent state.

	�
��
��

	�
��
�������

������

����������������������������
�� �!
	�
��
��

���������������������
����"�� �#�!

�����
�$%�����������
����"�� �#������"����
���!

�
 �&� '���
��
�

�����
�$%�����������
����"�� �#������"����
���!

�����
�$%�����������
����"�� �#������"����
���!

��&������������&

����������
(����"��
)�)�� ���

���)

�� *� ��
 ��������&� �)����!

&� �)����������������
�� �!

Figure 3

In Figure 3 the whole file download process is shown.
First the client asks the group of servers via a
multicast message for the altered data between its
version and the global version of the directory/file
database. We need this database on the client side to
browse its contents. The designated server that was
selected by the Group Intelligence module reacts and
sends the recent changes. Next, the client starts a
download process with the GetFile() multicast
message. This message contains a transaction ID
which is globally unique and it is generated from the
hash of the file and the public key of the user. Every
active server receives this message and starts
uploading file fragments. During this upload process
the client uses the flow control mechanism outlined in
Section 4.2.

Figure 4

Figure 4 shows the file upload sequence. First the
client sends a multicast message to the group of
servers with the transaction ID. This step is needed to
acquire a lock for the actual file. If there is no upload
transaction with this ID the designated server sends it
the right to modify. When the client receives this
message it starts uploading file fragments to the
servers. In the background a vote is taken among the
servers after each slice upload. This mechanism is
described in Section 4.3. There may also be a flow
control between the servers and the client, which is
mentioned in Section 4.2.

4.1 DATA REDUNDANCY MODULE
The task of this module is to provide the necessary
data redundancy for error correction. Several
approaches are available in the literature. The most
popular one is that of data mirroring. This is an easy-
to-use and implementable technique with low
processing overheads but we pay the price on the
storage consumption side. The creation of data parity
blocks is another popular way, but apart from its
optimal storage consumption this technique can

correct only one error at a time. This is a big
drawback.

Figure 5

For our goal a special class of the forward error
correcting codes FEC, the so-called erasure codes
provide the best solution. Since we can detect failing
data, we only have erasure errors. In the case of FEC
codes one can select the required redundancy level
and the algorithm generates the necessary error
correcting data blocks for the existing data blocks
(see Figures 5&6). If a data block fails, it can be
calculated from the remaining data and error
correcting blocs.

Figure 6

There are two types of FEC codes: codes with
guaranteed error correcting capabilities and codes
which have an error correcting capability with a given
probability. We opted for the first code family
because of its guaranteed error correcting capability.
The price, however, is the processing overheads
which depend on the selected error correction
capability. This is one or two magnitudes higher than
that for the second case. We chose a special case of
the Bose-Chaudhuri codes called the Reed-Solomon
[Riz94] code. The basic theory for this is quite
straightforward: we have n data blocks and we need
m data blocks to correct fewer than m erasure errors.
To produce m data blocks we require a special
equation system where every partial matrix is
invertible. To produce such an equation system the
Reed-Solomon approach makes use of the
Vandermonde matrix. The Galois field is used as the
space where the operations are performed. With this
solution we replace the complex calculation-intensive
operations by lookup tables. Here we use the Luigi

Rizzo [Riz94] implementation of the Reed-Solomon
code. The module divides the processed files into 64
KByte long stripes and calculates redundancy data
for these slices. These stripes form the basic unit of
the versioning system.

4.2 MULTICAST FLOW CONTROL
Our software is designed to run in a LAN
environment. Most modern LANs are switched and
there is practically a full mesh among network nodes.
The key feature of such a network is that the
bottleneck is on the source side or on the destination
side; the network itself does not contain bottleneck
nodes. TCP was designed and optimized for
situations where the network is a black box and we
can detect the available bandwidth only with the help
of packet loss. There is an optimal windowing
algorithm [Imr04], but this is not optimal when there
is more knowledge and we can use a multicast
protocol. We have complete knowledge of both sides
of the communication channel, so it is plausible to
use a flow control mechanism based on this. We
designed a simple flow control mechanism that is
capable of handling both multicast and unicast traffic.
UDP here was used as a base and we added a simple
signaling mechanism. Prior to each data manipulation
process a transaction identifier is created by the client
from the hash of the manipulated file and the public
key of the client, this ID being unique to the whole
system. At the same time only one client manipulates
a file.

Our multicast flow control mechanism has two
working modes, both modes utilizing the error
correcting capability of our solution. In this way we
can strike a balance between processor occupation
and network transfer capability. The download mode
operates during data transfer from a group of servers
to a client. The upload mode operates during the data
transfer from a client to a group of servers. In the
following we will describe these modes.

Download mode:

1. Receive(fragment, stripeId, from)

2. IF(stripe is not yet processed)

3. StoreFragmentInQueue()

4. CheckQueue()

5. ELSE

6. Drop(fragment)

7. END IF

8. IF(the Queue occupation is over 20%)

9. SendFlowControlInformation()

10. END IF

Figure 7

CheckQueue function:

1. IF(there are more than N data fragments for the
same stripe)

2. IF(we have every data fragments)

3. SendAlertToControler()

4. SetTheProcessedFlag(stripeId)

5. ELSE

6. StartErrorCorretion(stripeId)

7. END IF

8. END IF

Figure 8
In the download mode the client receives the file
segments from servers and then stores these
fragments in the input queue. If there are sufficient
fragments for error correction (Figure 8, line 6) the
client immediately starts the error correcting process.
When it finishes the error correction, an alert is sent
to the controller and it sets the processed bit for the
processed stripe (Figure 8, lines 3&4). Further
fragments for the processed stripes are dropped. With
this solution we can avoid the situation where
bottleneck nodes slow down the data transfer rate,
and we can tolerate transparently the failure of nodes
below a critical number.

In the upload mode our task is similar, namely that of
tolerating the node failures and avoiding the situation
where several slow nodes decrease the speed of the
whole upload process. In this case after the first
control packets the client starts sending the data
fragments to different nodes as unicast UDP packets.
When a storage node notices that the free space of its
input queues is below 80%, it sends a control packet
to uploading clients with a preferable transfer rate.
The client has the responsibility of deciding whether
it will accept the request or continue the upload with
a higher speed. The decision of the client is based on
responses from other storage nodes. It selects a speed
which is acceptable for more than a critical number of
storage nodes. The rest of the nodes will be corrected
with the help of the Consistency process which is a
part of the group intelligence.

4.3 GROUP INTELLIGENCE MODULE
In a distributed system this module plays a very
important role. Its main task is to provide
consistency, meaning a consistent state and consistent
databases. In an ideal system where there are no
failures this is not a hard task, but such difficulties
arise when we have a real system. In the real world
there is no algorithm that provides guaranteed
consistency. To be able to handle this situation we
define the following model of reality:

• The participants in the group management
protocol can reboot or switch off at any
time.

• The recorded data can never be overwritten.

• The messages must be delivered without
delay or they will be lost.

With these constraints this module has:

• A voting-based algorithm for sequence
upload verification

• A voting-based algorithm for file modifying
finalization

• A voting-based algorithm for designated
node selection

• Management of the correcting process of
failed nodes

The voting algorithm is based on one by Leslie
Lamports called Paxos [Lam98]. Every server node
maintains a history database [Figure 9] that contains
the successfully finished instructions. A data
modification or upload is a sequence of stripe
uploads which are a sequence of data fragment
uploads. After every stripe upload a vote is taken of
its success. If it was successful this fact is placed in
the history database. After every data modification
transaction (sequence of stripe uploads) a vote is
taken of the success of the transaction. The success of
a transaction really means that every sequence upload
vote was successful. If a transaction was successful
then every node erases the temporality signaling flag
of the modified file. After this is carried out the new
version of the file is the latest version.

Figure 9

A designated node is important when the group of
storage nodes sends messages to the client. This
happens when a client asks for the new file list and
about the success of file modification. The load of the
processor, the occupation of the memory and the
stability of the node are the properties which are
important during the designated storage node election
process. The designated nodes are changed after a
few dozen transactions.

The correction of failed nodes is handled collectively;
each consistent storage node is responsible for a
stripe. The sequence of tasks needed to correct it is
calculated using the data difference between the local

history table and the globally accepted one. To
calculate the required data fragment these nodes act
as clients. With this method we can achieve a
relatively fast self-correcting capability of the group
without imposing a high load on any given node.
There are so-called synchronization points where a
part of every history table in the system is the same.
After reaching several such points the old records are
deleted from the history table.

4.4 SECURITY
The security module has the task of providing data
integrity, user and node authentication and access
control. We store the digital certificates of nodes and
users in the central database; the MD5 hash and the
windows SID is stored here too. We use the existing
Kerberos infrastructure for authentication when it is
available. When there is no such infrastructure then
we provide a simple asymmetric encryption-based
authentication infrastructure. The data integrity of
messages is guarded by digitally signing them with
the sender’s private key.

4.5 DATA STORAGE
The data storage module is responsible for data
persistence and it has to maintain the history of
conducted processes. The stored data can be divided
into two main groups, the information which must be
globally consistent and the information which has
local importance (Figure 10). The Group Intelligence
module maintains the consistency of globally
important information.

Figure 10

We store the following information:

• Metadata about data such as file name, path
and access control lists.

• The data which is needed for the correct
working of our system like users, nodes and
certificates.

• The file fragments which have to be stored.

• A history of the processed instructions.

Every data type has its own behavior and therefore
we selected different solutions for persistence. Meta
data, infrastructure data, and histories are stored in a
lightweight relation database. The size of this
database never exceeds some 10 Mbytes. The
fragments can be several hundred MBytes. We tested
the handling of large objects in the current databases.
We may conclude that the conventional file system
has a speed about ten times faster for file fragments
than current database solutions.

We implemented a version handling file storage. We
store every version of a file. Between versions only
the difference is stored. The basic unit of the
difference handling is the file slice which was
mentioned in the Redundancy module.

The goal of the history table was described in the
Group Intelligence module.

5. IMPLEMENTATION
We selected the Windows platform because of its
widespread usage in offices and university
laboratories. Because it is well integrated in the
Windows platform, .NET framework and the C#
language was selected. For example it was very easy
to check the infrastructure and the computing power
of the hosting PC for leader election with the help of
the Windows Management Instrumentation service.
Another reason for using the .NET platform and
managed code against the unmanaged C or C++ code
was the short development cycle. Five graduate
students have been working for a year on the software
which is now in the alpha state. It has currently more
than 20,000 lines of code. Figure 11 shows the
detailed architecture. On the client side there are two
threads: the Network module and the Client
integration module. The network module has the task
of capturing incoming packets and storing it in a
synchronized queue. We designed this module to be
as simple as possible to be able to capture every
packet. The Client integration node consumes the
packets from the common synchronized queue with
the assistance of helper classes. If the queue is empty
then the thread will go in the wait state. In this state
the network module can wake it up with a pulse
signal. In the case of file upload the GUI uses
asynchronous method calls for each storage server. In
this way outgoing traffic is handled in parallel. As the
network module does not inspect the contents

������

�
�&��"���

��
�

#���
'�"�

� %%��)�

�����

#���
'�"�

���*
+

	�"�
��(

���"
(&���$��

��
����,��$!

�)�

��
*�
)��

��

�"�� �!

�������

#���
'�"�

� �)�

-�����"�

�������

#������$��"�

� %%���"��� �

�
����"�� ��.���$�

	�
��

� %%���"��� �

����-����

��$���

�	/����!

�����

�(���%

����-���

	�
��
�0�������

#������$��"�

	�
��
�0�	�
��

#������$��"�

�)�

��
*�
)��

��

�"�� �!

���*
+

� �)�

-�����"�

	�"�
��(

���"
(&���$��

��
����,��$!

	�"�
��(

��""����

� ��
 �!

�
����"�� ��.���$�

Figure 11

of the package and the packages could be encrypted
with only one thread, the original client integration
thread for handling the incoming will decode the
packets and, if needed, wake up the appropriate
sender thread for handling the output traffic.

The server side has a similar architecture, but instead
of a GUI there is a database engine and a Server-
Server intelligence module. These four threads are
always running: the Network the Server-Server the
Server-Client and the Hello thread. The first three
threads work the same way here as on the client side.
However, there are two queues; one for Server-Server
and one for Server-Client module. The Network
module makes a decision based on the type of the
destination address of the incoming packet for
selecting the appropriate queue. The Hello thread has
the simple task of periodically sending hello packets.
These packets act as keep-alive packets.

Owing to its speed, small size and easy-to-deploy
capabilities, SQLLite was selected as the database
engine. It has no transaction handling capabilities.
When one tries more than one writing process
simultaneously, it throws an exception. To avoid this,
we used the .NET frameworks ReaderLock solution
to achieve a serial access of this resource.

As we said earlier, we used the FEC encoder
implemented by Luigi Rizzo [Riz94]. We use it as a
native code.

6. EVALUATION
The raw encoding capacity with Reed-Solomon
encoding was first measured. The results are shown
in Table 1. We may conclude that the currently used
processors produce a usable throughput for 64/32 (64

nodes, and out of these 32 contain error correcting
information).

CPU Clock
Frequency

(GHz) N K
Throughput

(MBit/s)

1 64 32 40

2 64 32 80

3 64 32 120

3 200 100 38.4

Table 1
To test the performance we used a laboratory with
sixteen PC’s, each having P4 3 Ghz processors, 1
GByte of RAM and a 100 MBit/s network adapter,
while for debugging we used virtual PC’s. We
measured the throughput in different scenarios. Even
in a larger configuration when there were 16 servers
and we used a 16/8 redundancy scheme, the 100
MBit/s network bandwidth was the bottleneck. The
processor utilization was only 20% on the client side,
and less than 1% on the server side.

The above-mentioned measurements give a picture
only about the raw coding capacity of a typical PC.
Although this process is the most time-consuming
part of the whole transaction, the remaining task
could add significant delays. To be able to compare
our solution with already exiting systems we tested
our framework in different scenarios. One of the most
accepted methods of file system testing is the Andrew
benchmark [How88] which was created to measure
the efficiency of the Andrew file system. This
benchmark contains the following measurements:

• MakeDir
• Copy
• ScanDir
• ReadAll
• Compile

It measures the time needed for these tasks. Among
these popular tasks the size of the manipulated files is
important. The article [Cro98] estimates the
distribution of file sizes of the UNIX file system as a
Pareto distribution with parameters a=1.05 and
k=3800. In another paper [Dou99] it was
demonstrated that the windows file system file length
distribution could be modeled with the help of a
lognormal distribution and a tail with a two-step
lognormal distribution. As a simple, but appropriate
solution we chose the Pareto distribution to model the
file size distribution of user homes.

Currently our system is accessible only through the
GUI provided. We do not provide an API, so we
cannot use the original Andrew benchmark script. In
these circumstances we did the following and then
took measurements: we created an application which

generates files with the length of Pareto [Cro98]
distribution the depth of its directory path follows
linear distribution. Each character inside the files is
generated with a linear random distribution. We
uploaded and downloaded the generated file/directory
set with the help of the GUI. We used the Windows
SMB file share as a comparison partner. A test
network was set up with 10 PC’s, each having P4 3
Ghz processors, 1 GByte of RAM and 100 MBit/s
network adapter connected via a HP4108 switch as
server nodes and a similar PC as a client node. The
redundancy ratio was set to 7/3, so for every seven
original data items three error correction items were
generated. The following tasks were measured on the
LanStore and on a Windows share which was one of
the server nodes:

1. The delay of directory creation (a), and
deletion (b) in seconds, with 615 randomly
generated directories, with depth and name
space of a random linear distribution. We
executed this task on LanStore and on a
Windows share system.

2. The delay of file upload (c) and download
(d) in seconds and the throughput in
MByte/second with 200 randomly
generated files with the size distribution of
Pareto(a=1.05, k= 3800) and with random
hierarchy. The aggregate size of these files
was 4.08 Mbyte.

We obtained the following results:

 Lanstore Windows file share
 Delay Throughput Delay Throughput
a 353 - 5.3 -
b 116 - 3.8 -
c 213 0,02 3.5 1,25
d 53 0,08 6.1 0,7

Table 2
From these results we may conclude that for small
files our system is about two magnitudes slower than
the currently used network file systems. The reasons
for this lie in the distributed nature of our system. In
the current implementation every operation is
handled in separated transactions and after every
transaction a vote is taken of the success or failure of
the transaction. As we have seen with small files or
with administrative tasks like a directory tree
manipulation, these overheads can take a longer time
than the whole file upload. We can correct this
behavior by batch processing the operations. When
we upload a directory we can then assign a
transaction for the whole process instead of managing
every single operation as a transaction.

To test the framework as a video archive, we had to
measure with different file size distribution. The

video files are in most cases larger than normal files,
so we used the value of 3,800,000 for k. With this
value we generated 75 files with an aggregated size
of 1.03 GBytes and the directory hierarchy was
randomly generated. The test bench was the same as
in the previous measure. We got the following results
for file upload (e) and file download (f):

 Lanstore Windows file share
 Delay Throughput Delay Throughput
e 262 4.02 144 7,32
f 240 4.39 104 8,5

Table 3
We can see that with larger files our solution
provides a delay and throughput comparable to
traditional network file systems. With batch
processing this result can be further improved. In the
case of a stabile environment we can achieve higher
throughput than tradition file systems by sending the
error correcting data fragments only when they are
needed.

The data storage efficiency was measured as the ratio
of the size of stored files and the size of data which is
stored for every file. A record size in our database
was about 35 bytes, which is not comparable to the
stored data quantity. We may conclude that the data
storage efficiency really only depends on the used
error correcting level.

7. FUTURE WORK
So far the group intelligence module has only been
partially implemented, but we plan to finish it later
this year. We would like to implement the batch
processing and client side caching to achieve a better
performance for small files. To be able to modify the
contents we need versioning, and we plan to
implement this in early 2006. We would like to
measure the performance in larger configurations
with some 150-200 PC’s. In the future we would like
to use the LanStore as a basic building block for a
wide area video-on-demand system and a long term
archive for users’ files. The current bottleneck is the
FEC encoder; we would like to study the use of other
solutions.

8. CONCLUSIONS
In this article we presented a solution for a cheap,
reliable, high performance LAN based distributed
storage. The solution components we used are not
new but we could not find a system which is
optimized for such circumstances. The measurements
prove the usability of this solution even with current
desktop computing capabilities. We think that in the
near future with increasing processor capacity similar
solutions will be widely used.

9. ACKNOWLEDGEMENTS
The author would like to thank Tibor Antal, Peter
Bagrij, Tamas Horvath, Andras Maroti, and Kornel
Kallai for their creative ideas and hard work, Tibor
Csendes for his useful comments and suggestions,
and David P. Curley for checking this article from a
linguistic point of view.

10. AVAILABILITY
The source code, the binaries, the detailed
benchmarks and the tool for benchmarks will be
published and be freely available at the following
website: http://nlab.inf.u-szeged.hu/lanstore

11. REFERENCES
[Hart93] J. H. Hartman and J. K. Ousterhout. The

zebra striped network file system. Operating
Systems Review – 14th ACM Symposium on
Operating System Principles, 27(5):29–43,
December 1993.

 [Che94] P. M. Chen, E. K. Lee, G. A. Gibson, R. H.
Katz, and D. A. Patterson. RAID: High-
performance, reliable secondary storage. ACM
Computing Surveys, 1994.

[Kis92] J. Kistler and M. Satyanarayanan.
Disconnected operation in the Coda file system.
ACM Transactions on Computer Systems,
10(1):3–25, February 1992.

[Lee96] Edward K. Lee and Chandrohan A. Thekkah.
Petal: distributed virtual discs. SIGPLAN
Notices, 31(9):84-92,1-5 October 1996.

[Lam98] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16 (2), pp.
133-169, May 1998

 [Wyl00] J. Wylie, M. Bigrigg, J. Strunk, G. Ganger,
H. Kiliccote, and P. Khosla. Survivable
information storage systems. IEEE Computer,
33(8):61–68, August 2000.

[Wyl04] J. J. Wylie, G. R. Goodson, G. R. Ganger,
and M. K. Reiter. Efficient byzantine-tolerant
erasure-coded storage. In Int. Conf. on
Dependable Systems and Networks (DSN),
Florence, Italy, June 2004.

[Cas00] M. Castro and B. Liskov. Proactive recovery
in a byzantine-fault-tolerant system. In Proc. of
OSDI, 2000.

[Str00] J. D. Strunk, G. R. Goodson, M. L.
Scheinholtz, C. A. N. Soules, and G. R. Ganger.
Self-securing storage: protecting data in
compromised systems. Symposium on Operating
Systems Design and Implementation, pages 165–
180. USENIX Association, 2000.

[Rhe03] S. Rhea, P. Eaton, D. Geels, H.
Weatherspoon, B. Zhao, and J. Kubiatowicz.
Pond: The oceanstore prototype. In Proceedings
of the Conference on File and Storage
Technologies (FAST), 2003.

[Zha01] B. Y. Zhao, J. D. Kubiatowicz, and A. D.
Joseph," Tapestry: An infrastructure for fault-
tolerant widearea location and routing," UC
Berkeley, Tech. Rep. UCB/CSD-01-1141, April
2001.

[Fro03] S. Frolund, A. Merchant, Y. Saito, S. Spence,
and A. Veitch. FAB: Enterprise Storage Systems
on a Shoestring. In 8th Workshop on Hot Topics
in Operating Systems (HOTOSVIII), Kauai, HI,
USA, May 2003.

[Imr04] Cs. Imreh, V. Bilicki. On the optimization
models of congestion control. In XXVI.
Operational Research Conference. Gyor,
Hungary, May 2004.

[Riz94] Luigi Rizzo, Effective Erasure Codes for
Reliable Computer Communication Protocols.
ACM Computer Communication Review, VOL
27, pp. 24-36, 1997.

[How88] J. H. Howard, M. L. Kazar, S. G. Menees,
D. A. Nichols, M. Satyanarayanan, R. N.
Sidebotham, and M. J. West, `̀Scale and
performance in a distributed file system,''
Transactions on Computer Systems, Vol. 6, pp.
51-81, February 1988.

[Cro98] M. Crovella, M. Taqqu, and A. Bestavros.
Heavy-Tailed Probability Distributions in the
World Wide Web. Appears in the book: A
Practical Guide To Heavy Tails: Statistical
Techniques and Applications, R. Adler, R.
Feldman and M. S. Taqqu, editors, Birkhauser,
Boston, 1998.

[Dou99] J. R. Douceur and W. J. Bolosky. A large-
scale study of filesystem contents. In ACM
SIGMETRICS’99, ps 59–70, May 1999.

